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Motivation

Spatial and spatio-temporal interpolation and forecasting is a challeng-
ing task because space-time data in environmental science are

large.
exhibit complex spatio-temporal dependence.
may not be stationary.

In spatial statistics, Kriging is widely used for spatial prediction and
forecasting.

Features of Kriging predictor:

it is the best linear unbiased predictor (BLUP).
it involves modeling the mean and the covariance function of a spatial
and spatio-temporal process.
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Challenges

Drawbacks of Kriging prediction:

it is typically not optimal for non-Gaussian data, e.g., skewed, heavy-
tailed, count, or categorical data.

it is computationally expensive for massive datasets (for both estimation
and prediction) as the Cholesky factorization for a matrix of size n × n
has O(n3) performance complexity and O(n2) memory space complexity.

Deep learning provides a computationally scalable methodology for a
variety of data types and non-linear prediction. However, prediction
uncertainty is an issue.
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Contributions

This thesis aim at developing novel methodologies through deep learning
for spatio-temporal statistics.

Project 1 proposes a spatially dependent neural network
( Biv.DeepKriging ) to perform bivariate spatial prediction and
give prediction uncertainties.

Project 2 proposes a spatio-temporal deep learning framework
( Space-Time.DeepKriging ) for large-scale interpolation and prob-

abilistic forecasting ( QConvLSTM ).

Project 3 implements the nonstationary Matérn kernel in ExaGeoSTAT

using HPC and Convolutional Neural Networks ( ConvNet ) for large
datasets.

Project 4 proposes a generalized spatial warping function called
Spatial Normalizing Flows to model complex nonstationary fields.
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Project 1: Bivariate DeepKriging for Large-scale Spatial
Interpolation of Wind Fields
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Background

The DeepKriging as proposed by Chen et al. (2024)a uses basis func-
tions as embedding layer for the deep neural network to model the
univariate spatial process.

They also propose a histogram-based prediction interval computation
methodology.

This project is an extension of DeepKriging for bivariate spatial pro-
cesses.

A novel data-driven prediction interval mechanism is also devised which
addresses the shortcomings of the prediction interval proposed by Chen
et al. (2024).

aChen, W., Y. Li, B. J. Reich, and Y. Sun (2024). Deepkriging: Spatially dependent
deep neural networks for spatial prediction. Accepted, Statistica Sinica, to appear.
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Theory of Bivariate DeepKriging

let {Y(s), s ∈ D},D ⊆ Rp, be a bivariate spatial process. A realization
of the process Z(si ) is modeled as Z(si ) = Y(si ) + ϵ(si ) with nugget
ϵ(si ), observed at locations s1, s2, . . . , sN .

The spatial model with covariates X(si ) can be written as Y(si ) =
f (X(si )) + γ(si ), where f (·) is a nonlienar function and γ(si ) is the
underlying zero-mean spatial process.

With the above formulation the theoretical backing of Bivariate Deep-
Kriging (Biv.DeepKriging) is as follows:

Theorem

For a co-located bivariate spatial process, assuming that the latent variables
are constructed with the same sets of basis functions, the Linear Model of
Co-regionalization (LMC)a represents a special case of Biv.DeepKriging.

aGenton, M. G. and W. Kleiber (2015). Cross-covariance functions for multivariate
geo-statistics. Statistical Science 30 (2), 147–163.
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Bivariate DeepKriging: A Spatially Dependent Deep
Neural Network

Using the multivariate Karhunen-Loéve theorema the spa-
tial process γ(si ) can be written of the form γ(si ) ≈∑K

b=1{wb,1ϕb,1(s),wb,2ϕb,2(s)}T where wb,u’s are independent
random variables and ϕb,u(si )’s are the pairwise orthonormal basis
functions corresponding to variable u, u = 1, 2.

In this work the multi-resolution compactly supported Wendland radial
basis functionb is chosen to embedd the spatial locations.

The idea of Biv.DeepKriging c: Through the basis function repre-
sentation transform the spatial problem into a multi output regression
problem by transforming the coordinate s to K basis functions.

We pass the covariates and the bases together Xϕ(si ) =
(ϕ(si )

T ,Xvec(si )
T )T as input to the DNN.

aPaciorek, Christopher J., and Mark J. Schervish. ”Spatial modelling using a new
class of nonstationary covariance functions.” Environmetrics: The official journal of the
International Environmetrics Society 17.5 (2006): 483-506.

bNychka, D., S. Bandyopadhyay, D. Hammerling, F. Lindgren, and S. Sain (2015). A
multiresolution Gaussian process model for the analysis of large spatial datasets. Journal
of Computational and Graphical Statistics 24 (2), 579–599.

cChen, W., Y. Li, B. J. Reich, and Y. Sun (2024). Deepkriging: Spatially dependent
deep neural networks for spatial prediction. Accepted, Statistica Sinica, to appear.
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Loss Function

The optimal neural network based predictor is obtained as
foptNN (Xϕ(s0)) = argminfNN R(fNN(Xϕ(s0))|Zvec).

Here R(·) is given as

R{fNN(Xϕ(s))|Zvec} =
1

N

N∑
n=1

M(sn),

where M(sn) =
w1×(fNN1 (Xϕ(s)|θ)−Z1(sn))2+w2×(fNN2 (Xϕ(s)|θ)−Z2(sn))2

2 . and
wu ∝ σ2u, u = 1, 2. We have chosen wu = 1

σ2
u
. Here σ2u is unknown and

can be estimated through the sample variance of the u-th variable.
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Prediction Uncertainty (Prediction Mean)

For the bivariate spatial prediction problem, the prediction at an unob-
served location s0 can be expressed as

Ẑ(s0) = foptNN (Xϕ(s0)) + ϵ(s0).

By employing ensembles, we can generate B replications of Ẑ(s0) at
s0. Consequently, the prediction can be articulated as

Ẑ(s0)
B =

(
1

B

B∑
i=1

Ẑ1(s0)i ,
1

B

B∑
i=1

Ẑ2(s0)i

)T

=

(
1

B

B∑
i=1

(
f optNN1

(Xϕ(s0)) + ϵ1(s0)
)
i
,
1

B

B∑
i=1

(
f optNN2

(Xϕ(s0)) + ϵ2(s0)
)
i

)T

.

Employing the multidimensional Central Limit Theorem Ẑ(s0)B follows
bivariate normal distribution.
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Prediction Uncertainty (Prediction Variance)

The variance term associated with Zu(s0), for u = 1, 2, is σ2(Zu(s0)) =
Var(Yu(s0))+Var(ϵu(s0)), assuming independence between Yu(s0) and
ϵu(s0).

We can estimate Var(Yu(s0)) as

̂Var(Yu(s0)) =
1

B − 1

B∑
i=1

f optNNu
(Xϕ(s0))

2
i −

(
1

B

B∑
i=1

f optNNu
(Xϕ(s0))i

)2

.

It can be shown that the noise variance will be the following

r2u (s0) = max{(Zu(s0)−
1

B

B∑
i=1

f optNNu
(Xϕ(s0))i )

2 − ̂Var(Yu(s0)), 0}.

Computation of r2u (s0) as defined previously is infeasible as we do not
have Zu(s0). Hence we estimate r2u (s0) through

r̂2u (s0) =
1
G

∑
sg∈D20

r2u (sg ), such that sg ’s are the nearest G locations

to s0.
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Prediction Uncertainty (Prediction Variance)
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Prediction Uncertainty: Prediction Interval

Then for a given test data location s0 the prediction interval is

Ẑu(s0)
B ± t(1−α/2),df

√
1

B

(
̂Var(Yu(s0)) + r̂2u (s0)

)
, u = 1, 2,

where t(1−α/2),df represents the 1 − α/2 quantile of the t-distribution
with df degrees of freedom, df = N − p, where p denotes the number
of estimated parameters.
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Algorithm for Prediction Interval
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Simulation Studies

Three separate simulation scenarios are devised:

Gaussian with parsimonious Matérn covariance.

Non-Gaussian process with covariates : Gaussian process is generated
and it is then transformed by the Tukey G and H transformation to
yield non-Gaussian field

Nonstationary process : Nonlinear combinations of basis functions are
taken into consideration for this process generation.

Each simulation scenario is replicated 100 times.
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Simulation Studies

The proposed model (Biv.DeepKriging) is compared against Gaussian krig-
ing with parsimonious Matérn covariance(CoKriging.Matérn) and Linear
Model of Coregionalization (CoKriging.LMC) respectively.

Different metrics such as the Mean Square Prediction Error (MSPE), Pre-
diction Interval Coverage Probability (PICP) and Mean Prediction Interval
Width (MPIW) are considered for comparing the predictions and the pre-
diction intervals.

Table: Comparison on both the variables over different simulation settings.

Simulation type Models MSPE1 SE1 PICP1 MPIW1 MSPE2 SE2 PICP2 MPIW2

Gaussian
CoKriging.Matérntrue

Biv.DeepKriging
0.23
0.24

0.11
0.19

0.95
0.94

0.87
0.98

0.21
0.24

0.09
0.18

0.95
0.95

0.92
1.07

non-Gaussian
CoKriging.Matérn
CoKriging.LMC
Biv.DeepKriging

3.48 (×103)
87.4
32.7

0.29 (×103)
12.13
11.6

0.27
0.58
0.94

6.21
11.2
29.9

0.98 (×103)
94.5
23.8

0.49 (×103)
21.9
9.11

0.26
0.51
0.94

6.16
9.99
29.4

non-stationary
CoKriging.Matérn
CoKriging.LMC
Biv.DeepKriging

1.95
1.26

7.52 (×10−4)

0.75
0.14

1.01 (×10−4)

0.92
0.92
0.96

3.53
3.49
0.16

0.13
0.14

6.83 (×10−4)

0.02
0.02

1.08 (×10−4)

0.09
0.10
0.95

1.01
1.33
0.19

pratik.nag@kaust.edu.sa May 29, 2024 16 / 59



Simulation studies: Prediction intervals

Figure: Prediction interval for variable 1 and variable 2 for the nonstationary
simulation.
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Simulation Studies: Computation Time

Figure: Total computation time (in secconds) for different models in log scale for
different number of locations

5.0

7.5

10.0

1200 2400 3600 6400
Number of locations

S
ec

on
ds

 (
in

 lo
g 

sc
al

e)

Model

CoKriging.Mate'rn
Biv.DeepKriging interval prediction CPU
Biv.DeepKriging interval prediction GPU
Biv.DeepKriging point prediction CPU
Biv.DeepKriging point prediction GPU

pratik.nag@kaust.edu.sa May 29, 2024 18 / 59



Application on Wind Data

The U and V components of wind over the Middle East, encompassing
506,771 locations, are considered for this study.

For CoKriging.Matérn total computation time was 2.18 days where

as for Biv.DeepKriging it took 16.81 minutes for point prediction

and 55.61 minutes for interval prediction.

Models RMSPE1 RMSPE2

CoKriging.Matérn 0.882 4.066

Biv.DeepKriging147000 0.488 0.438

Biv.DeepKriging450000 0.394 0.392

Models PICP1 PICP2 MPIW1 MPIW2

CoKriging.Matérn 0.601 0.734 1.671 1.343

Biv.DeepKriging 0.971 0.950 1.226 1.340
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Spatial Downscaling
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A high resolution interpolation is given (1km × 1km) for the region
near NEOM, an upcoming smart city in Saudi Arabia. This
downscaling can help understand the wind pattern better and can
potentially help in wind energy setup in the area.
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Conclusion

The proposed framework, Biv.DeepKriging, which generalizes the Lin-
ear Model of Coregionalization, is suitable for modeling bivariate non-
Gaussian and nonstationary spatial fields.

The proposed method is also computationally scalable and can be im-
plemented for large-scale datasets.

The proposed prediction interval technique does not rely on the distri-
bution of the data and can be applied to any kind of application beyond
spatial modeling.

pratik.nag@kaust.edu.sa May 29, 2024 21 / 59



Conclusion

The proposed framework, Biv.DeepKriging, which generalizes the Lin-
ear Model of Coregionalization, is suitable for modeling bivariate non-
Gaussian and nonstationary spatial fields.

The proposed method is also computationally scalable and can be im-
plemented for large-scale datasets.

The proposed prediction interval technique does not rely on the distri-
bution of the data and can be applied to any kind of application beyond
spatial modeling.

pratik.nag@kaust.edu.sa May 29, 2024 21 / 59



Conclusion

The proposed framework, Biv.DeepKriging, which generalizes the Lin-
ear Model of Coregionalization, is suitable for modeling bivariate non-
Gaussian and nonstationary spatial fields.

The proposed method is also computationally scalable and can be im-
plemented for large-scale datasets.

The proposed prediction interval technique does not rely on the distri-
bution of the data and can be applied to any kind of application beyond
spatial modeling.

pratik.nag@kaust.edu.sa May 29, 2024 21 / 59



Project 2: Spatio-Temporal DeepKriging for Probabilistic
Interpolation and Forecasting
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Background

This project is an extension of DeepKriging for spatio-temporal sce-
nario, where interpolation and forecasting is done through a 2-stage
modeling framework. The project also proposes a novel implementa-
tion of quantile neural networks to obtain prediction uncertainty.

Consider the real valued spatio-temporal random field {Y (s, t), s ∈
D, t ∈ T },D ⊆ Rp, T ⊆ R. Assuming the data is observed at N
locations and K time points, the realizations can be given as ZN,K =
{Z (s1, t1),Z (s2, t1), . . . ,Z (sN , tK )} such that

Z (si , tj) = Y (si , tj) + ϵ(si , tj).

Given observations ZN,K , two common goals of spatio-temporal pre-
diction are probabilistic interpolation, i.e., predict the true process
Y (s0, t) at unobserved spatial location s0, and forecasting, i.e., predict
Y (s0, tK+u) at unobserved location s0 at a future time point tK+u.
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Optimal Predictor for Probabilistic Interpolation

The optimal predictor can written as:

Ŷ opt
τ ((s0, t)|ZN,K ) = argmin

Ŷ

R1(Ŷτ (s0, t)|ZN,K ),

where R1(·) represents the true risk function necessary for obtaining
the τ -th quantile prediction.

An estimation for R1(·) can be expressed through the quantile loss
function, defined as:

Remp
1 (Ŷτ (s, t)|ZN,K ) =

1

NK

N∑
n=1

K∑
k=1

ρτ (Ŷτ (sn, tk)− Z (sn, tk)),

where ρτ (v) = v(τ − I (v < 0)) and τ ∈ (0, 1) is quantile level.
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Space-Time.DeepKriging: DNN for Interpolation

Similar to DeepKriginga a single-output deep neural network structure
(Space-Time. DeepKriging) is used to build the spatio-temporal
DeepKriging framework with basis functions as inputs.

Wendland’s compactly supported radial basis functions are used for
spatial location embedding and Gaussian radial bases are used for tem-
poral embedding.

Hence Ŷτ (·, ·) can be expressed through the DNN as:

Ŷτ (s, t) = Ψ(τ, fNNτ (Xϕ(s, t))),

where Xϕ(s, t) is the set of stacked basis functions,fNNτ (Xϕ(s, t)) is the

DNN output at quantile level τ , and Ψ(·, ·) is the activation function
of the output layer.

aChen, W., Y. Li, B. J. Reich, and Y. Sun (2024). Deepkriging: Spatially dependent
deep neural networks for spatial prediction. Accepted, Statistica Sinica, to appear.
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The Output Layer Activation Ψ(·, ·)

In theory, quantile regression lines are expected not to intersect; how-
ever, unconstrained optimization of Remp

1 (Ŷτ (s, t)|ZN,K ) may inadver-
tently introduce crossing issues.

To avoid quantile cross-over, the following activation function for the
output layer is proposed:

Ψ(τ, x) =


x for τ = 0.5

fConstant +
λ(τ−0.5)
1+e−x for τ > 0.5

fConstant − λ(0.5−τ)
1+e−x for τ < 0.5,

Here fConstant is the model output for quantile level 0.5, λ is the hy-
perparameter proportional to the variance of the data.
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Probabilistic Forecasting

The Long short-term memory (LSTM) network is used to perform quan-
tile based forecast of the time series at time point tK+u (call it QL-
STM).

Here Ŷτ (s0, tK+u) = ̂f LSTMNNτ
(s0, tK+u), where ̂f LSTMNNτ

(s0, tK+u) is a
multi-layer stacked LSTM network.

Although QLSTM is highly effective for capturing temporal depen-
dence, it does not use information from other locations.

For space-time data, this project propose the convolutional LSTM
which includes data from other locations by passing the CNN layer
as the input to the LSTM layer (call it QConvLSTM).
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Optimal Predictor for QConvLSTM

The optimal predictor can written as:

Ŷ opt
τ ((s0, tK+u)|ZN,K ) = argmin

Ŷ

R2(Ŷτ (s0, t)|ZN,K ),

where R2(·) represents the true risk function.

An estimarte of R2(·) can be written as:

Remp
2 (Ŷτ (s0, t)|ZN,K ) =

1

K

K∑
k=1

ρτ (f
Conv
NNτ

(s0, tk)− XNN
k ),

where f ConvNNτ
(s0, tk) is the output of QConvLSTM.

Here XNN = {f̂NNτ (Xϕ(s0, t1)), · · · , f̂NNτ (Xϕ(s0, tK ))}.
Note that, the input to f ConvNNτ

(s0, tk) here is:

XNNCONV = {A(s0, t1), . . . ,A(s0, tK )}, where A(s0, tk) is a r×r matrix
of interpolation over a gridded neighbourhood Ns0 around s0.
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ρτ (f
Conv
NNτ

(s0, tk)− XNN
k ),

where f ConvNNτ
(s0, tk) is the output of QConvLSTM.

Here XNN = {f̂NNτ (Xϕ(s0, t1)), · · · , f̂NNτ (Xϕ(s0, tK ))}.

Note that, the input to f ConvNNτ
(s0, tk) here is:

XNNCONV = {A(s0, t1), . . . ,A(s0, tK )}, where A(s0, tk) is a r×r matrix
of interpolation over a gridded neighbourhood Ns0 around s0.
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Simulation Studies

The proposed Space-Time.DeepKriging won the KAUST competi-
tion in large-scale prediction on 100k and 1M space-time locations
with double digit improvement in percentage for MSPE over compet-
ing methods such as the Veccia’s approximation and block composite
likelihood.

We compare the method on a simulated nonstationary field with 50k
space-time locations with other competitive methods that can be ap-
plied for large-scale interpolation and forecasting.
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Numeric Results on Simulated Data

Table: Average MSPE of prediction for simulated data. Here SE stands for
standard error of the predictions.

Models MSPE SE

Space-Time.DeepKriging 0.167 0.073
GpGp 0.746 0.288

Table: Average MSPE, MPIW and PICP of forecast for simulated data.

Models Avg.MSPE SE Avg.MPIW SE Avg.PICP

QConvLSTM 0.267 0.219 1.462 0.126 90.39
ARIMA 0.277 0.278 2.262 0.082 90.72
QLSTM 0.392 0.523 1.558 0.316 89.94
GpGp 0.839 0.358 - - -
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Forecast on Simulated Data

Forecasting at specific observed locations using QConvLSTM.
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Application on PM2.5 : Interpolation

We also apply our method to the PM2.5 data over USA with over 200,000
space-time locations.
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Application on PM2.5 : Forecast for San Francisco

Forecast period for the last six observed months up to December 2022:
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Conclusion

In this study, without making any parametric assumptions about the
underlying distribution of the data, a novel, easy-to-use methodology is
established for interpolation as well as forecasting for spatio-temporal
processes.

In order to further enhance the deep learning-based spatio-temporal
modeling architecture, semi-parametric quantile-based prediction in-
tervals are included.

The proposed method for spatio-temporal interpolation and forecasting
is valid for general class of non-Gaussian and nonstationary spatio-
temporal processes.

The proposed approach can be easily extended to large datasets with
minimum hardware support.
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Project 3: Efficient Large-scale Nonstationary Spatial
Covariance Function Estimation using Convolutional

Neural Networks
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Introduction

In environmental and ecological applications nonstationarity assump-
tion is more realistic and can be accounted through
Covariance Nonstationarity .

This project gives a novel approach for modeling the nonstationary
Matérn covariance function through HPC and convolutional neural net-
works.
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Nonstationary Matérn Covariance Function

Let Z (·) be a spatial process observed over locations s1, s2, . . . , sN ∈
D ⊆ Rd , where Z (si ) = µ(si ) + Y (si ) + ϵ, si ∈ D with the underlying
GRF Y (si ) having covariance function C (·, ·).

The nonstationary Matérn covariance:

CNS (si , sj ;θ) = τ (si ) τ (sj)1ij (si , sj) +
σ (si )σ (sj) |Σ (si )|1/4 |Σ (sj)|1/4

Γ(ν̄(si , sj))2ν̄(si ,sj )−1

×
∣∣∣∣Σ (si ) + Σ (sj)

2

∣∣∣∣−1/2(
2
√
ν̄(si , sj)Qij

)ν̄(si ,sj )

Kν̄(si ,sj )

(
2
√
ν̄(si , sj)Qij

)
,

and νij =
ν(si )+ν(sj )

2 , where θ(si ) = {Σ(si ), σ(si ), τ2(si ), ν(si )} are
spatially varying parameters that control nonstationarity.

Σ(si ) controls the spatial range and anisotropy, σ(si ) controls the local
standard deviation, τ2(si ) controls the nugget effect, and ν(si ) controls
the smoothness.

Qij = (si − sj)
T
(
Σi+Σj

2

)−1
(si − sj) is the Mahalanobis distance be-

tween points si and sj .
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Existing Methods and Challenges

Existing methods:

The most common approach to modeling the nonstationary Matérn co-
variance is to divide the nonstationary field into subregions where the
parameters are assumed to be stationary, and then construct the spa-
tially varying parameter set using kernel smoothing.

ConvoSPATa is an R package widely used for modeling this covariance
function.

Challenges:

ConvoSPAT cannot handle large datasets.

The subregion selection is subjective and not data-driven.

This project addresses the aforementioned challenges by

Implementing the nonstationary covariance function in ExaGeoStat to
handle large datasets.

Developing a CNN-based cluster mechanism for data-driven subregion
selection, where the model also serves as a stationary-nonstationary clas-
sifier.

a
Risser MD, Calder CA (2017). “Local Likelihood Estimation for Covariance Functions with Spatially-Varying Parameters:

The convoSPAT Package for R.” Journal of Statistical Software, 81(14), 1–32. doi:10.18637/jss.v081.i14.
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Maximum Likelihood Parameter Estimation with
ExaGeoStat

This work employs the ExaGeoStata software to facilitate scalable pa-
rameter estimation, designed explicitly for modeling large-scale geospa-
tial data circumventing the need for approximated likelihoods.

ExaGeoStat estimates the statistical parameters of a given geospa-
tial domain in parallel and at large-scale. ExaGeoStat has distributed
memory support, enabling one to perform parallel computing.

aAbdulah, S., H. Ltaief, Y. Sun, M. G. Genton, and D. E. Keyes (2018).
ExaGeoStat: A high performance unified software for geostatistics on manycore systems.
IEEE Transactions on Parallel and Distributed Systems 29 (12), 2771–2784.
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Kernel Smoothing

To tackle the issue of many unknown parameters, the kernel smooth-
ing approach is implemented in ExaGeoStat to represent the spatially
varying parameters through smooth functions.

The spatially varying parameters are modeled as follows:

Let K represent the total number of subregions and S1,S2, ...,SK be
the anchor locations to those subregions, which are the centers of dif-
ferent subregions. The spatially varying parameters are defined as:

θ (si ) =
K∑

k=1

W (si ,Sk)θ (Sk).
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Kernel Smoothing

Let K represent the total number of subregions and S1,S2, ...,Sk be the
anchor locations to those subregions, which are the centers of different
subregions. The spatially varying parameters are defined as:

θ (si ) =
K∑

k=1

W (si ,Sk)θ (Sk),

For any si ∈ D ⊂ Rd , where Sk ’s are anchor locations and θ(Sk)’s
are the parameter values at those anchor locations.

W (si ,Sk) =
K (si ,Sk)∑
k K (si ,Sk)

and the Gaussian kernel K (si ,Sk) = exp
((
−∥si − Sk∥2

)
/2h
)
, where

h is the bandwidth.
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ConvNet for Nonstationarity Classification

This project propose a Convolutional Neural Network based classifier
(ConvNet) which can be used to distinguish between stationary and
nonstationary random fields.

Probability of 
nonstationarity

CNN Input

Convolution layers
Flattening layer

Hidden layer

100 X 100 Matrix
32 X 98 X 98 

Dimentional array
Vector of length 

32 X 98 X 98 

Vector of length 
128

Figure: The structure of the CNN model, the flatten layer victories the CNN
layer output, the final layer with softmax activation provides the probability
of a particular class.
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The ConvNet Training Phase

Stationary and nonstationary datasets with different sizes are simulated
for the CNN model training.

Stationary datasets are generated using the stationary Matérn covari-
ance while the nonstationary datasets are generated with the nonsta-
tionary Matérn covariance function.

To ensure generalized parameter settings different nonlinear functions
representing the parameters in θ are chosen.

A simple pre-processing transformation is followed to transform the
data into a regular 100× 100 grid.
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ConvNet for Subregion Selection

A Clustering approach is considered here for selection of subregions.

The whole nonstationary region is first divided into K clusters.

Each of the clusters/subregions are then pre-processed and transformed
into 100× 100 grid to pass to ConvNet.

The ConvNet provides a nonstationarity index score for each.

This process is followed for B number of iterations.

The optimal cluster is then chosen for which the combined nonstation-
arity index as obtained from the ConvNet model is the smallest.
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Simulation Studies : Performance of The ConvNet Model

The ConvNet model obtains 97% and 98% accuracy respectively in suc-
cessfully identifying the stationary and nonstationary random fields on test
data.
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Figure: Histogram of the nonstationarity index for stationary testing data and
nonstationary testing data.
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Simulation Study: Parameter Estimation

Figure: Heatmaps for true parameters and the average of the estimated
parameters for different simulation scenarios.
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Soil Moisture Data Application

This method is applied to analyze soil moisture content data across the
Mississippi Basin region in the United States with 200,000 locations. Based
on AIC the performing model came out to be the three-subregion model.
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Conclusion

This project present ConvNet, an approach that is able to distinguish
the stationary and nonstationary regions.

ConvNet is then coupled with a clustering mechanism to identify the
stationary subregions in a given geospatial region.

ExaGeoStat framework is used along with the clustering mechanism
for exact large-scale implementation of nonstationary Matérn kernel.
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Project 4: Spatial Normalizing Flows for Nonstationary
Gaussian Processes
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Background

Modeling complex environmental phenomena often involves selecting
nonstationary and anisotropic covariance structures such as the non-
stationary Matérn covariance as discussed in previous section.

However, the choise of the covarince can pose challenges when the
underlying spatial process is not well-understood.

An alternative approach to model these intricate structures involves
deformation of the spatial domain with the idea that a process that
is highly nonstationary or anisotropic on the original domain could be
stationary and isotropic on the warped domain.
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Existing Methods and Challenges

Key previous works:

Warping using multi-dimentional scalinga.

Spatial Input-Warped Gaussian Processesb: a collection of simple
warping units to model the deformation in deep learning framework.

Challenges:

Choise of warping functions are always tricky.

The work of Zammit-Mangion et al. (2021)b also has some
limitations:The individual warping units as in Zammit-Mangion et al.
(2021)b are rigid and is only suitable for two-dimentional spatial
processes.

This work explores the novel application of Neural Autoregressive Flows
(NAFs) to model spatial warping.

a
Sampson, P. D. and Guttorp, P. (1992) Nonparametric estimation of nonstationary spatial covariance structure. Journal

of the American Statistical Association 87(417), 108–119.
b
Zammit-Mangion, A., Ng, T. L. J., Vu, Q. and Filippone, M. (2021) Deep compositional spatial models. Journal of the

American Statistical Association pp. 1–22.
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Normalizing Flows

The normalizing flow (NF) is an invertible function typically used to model
transformations of random variables. We employ the normalizing flow to
warp the spatial locations. A special type of NF is the auto-regressive flow
(AF) which can be viewed as a triangular map T (.) where

T (k)(s1, . . . , sk) = S (k)(sk ;γk(s1, . . . , sk−1;ϑk)),

where, {s1, . . . , sk} ⊆ s, k = 1, . . . , d , and γk is the k-th conditional net-
work with parameters ϑk . The conditional network is a multivariate mapping
that takes inputs s1, . . . , sk−1 and gives outputs in the parameter space of
S (k), i,e., γk : Dk−1 → Rmk , where mk is the number of parameters that
parameterize S (k).

pratik.nag@kaust.edu.sa May 29, 2024 50 / 59



Normalizing Flows

This work focuses on the class of Neural Autoregressive Flows (NAFs) ,

proposed by Huang et al. (2018)a. We choose a class of functions commonly

referred to as Deep Sigmoidal Flows (DSF) . In this class, one single layer
has mk = 3M parameters, where M ≥ 1, and the k-th component has the
form

S (k)(sk ;γk) = σ−1
(
wT

k σ(aksk + bk)
)
,

where σ−1(·) is the logit function and parameters γk ≡ (wT
k , a

T
k ,b

T
k )

T are

neural network functions of length M with
∑M

i=1 wki = 1. This construc-
tion ensures monotonicity of the function S (k)(·) and hence of the function
T (k)(·). Ultimately, this construction ensures that the multivariate mapping
T (s1, . . . , sk) will be injective.

aHuang, C.-W., D. Krueger, A. Lacoste, and A. Courville (2018). Neural
autoregressive flows. In International Conference on Machine Learning, pp. 2078–2087.
PMLR.
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Deep Dense Sigmoidal Flows

A multi layer perceptron (MLP) can be obtained by stacking multiple
layers of these DSFs together. However, this architecture contains a
bottleneck as the output of each layer has only one node.

The alternative framework is the Deep Dense Sigmoidal Flows (DDSFs) .

In this class, layer l of the flow has mk = M2
l +MlMl−1 +2Ml param-

eters, where Ml−1,Ml ≥ 1 with

h1k = σ−1
(
w1

kσ(a
1
k ⊙ (u1

k sk) + b1
k)
)
,

hl−1
k = σ−1

(
W l

kσ(a
l
k ⊙ (U l

kh
l−1
k ) + bl

k)
)
, l = 2, . . . , L− 1,

hLk = σ−1
(
wL

k σ(a
L
k ⊙ (uL

k h
L−1
k ) + b1

k)
)
,

S (k)(sk ;γk) = hLk ,

where,
∑Ml

j=1 wkij = 1 and
∑Ml

j=1 ukij = 1 corresponding to the i-th row

of matrices W l
k ,U

l
k . Similar to DSF the parameters here are defined

through γk .
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Binary Masking

The vector of locations s is passed through a single feed forward network
to obtain γk . To enforce the autoregressive property, the feed forward
function is modified by introducing binary mask MW:

γk = g (b+ (W ⊙MW) s)

Here, ⊙ denotes elementwise multiplication, and the mask MW ensure
the autoregressive property.

Constraints on the maximum number of inputs to each hidden unit
are encoded in the matrix masking the connections between input and
hidden units:

MWj,k
= 1m(j)≥k =

{
1 if m(j) ≥ k

0 otherwise
,

for k ∈ {1, . . . ,D} and l ∈ {1, . . . , L}. Overall, the constraint is that
the kth output unit connects only to s<k (not to s≥k).

pratik.nag@kaust.edu.sa May 29, 2024 52 / 59



Binary Masking

The vector of locations s is passed through a single feed forward network
to obtain γk . To enforce the autoregressive property, the feed forward
function is modified by introducing binary mask MW:

γk = g (b+ (W ⊙MW) s)

Here, ⊙ denotes elementwise multiplication, and the mask MW ensure
the autoregressive property.

Constraints on the maximum number of inputs to each hidden unit
are encoded in the matrix masking the connections between input and
hidden units:

MWj,k
= 1m(j)≥k =

{
1 if m(j) ≥ k

0 otherwise
,

for k ∈ {1, . . . ,D} and l ∈ {1, . . . , L}. Overall, the constraint is that
the kth output unit connects only to s<k (not to s≥k).

pratik.nag@kaust.edu.sa May 29, 2024 52 / 59



Loss Function and Training

In this project, the aim is to model the nonstationary space through a
stationary Gaussian process with a simple covariance structure such as
the exponential covariance.

A 2-stage training is employed to maximize the loss function.

In the first stage θ = θ0 is fixed, and L(Svec ,θ0) is maximized based
on the warped location S.

Training of the warping function is done through DDSFs .

In the next stage the warping is fixed to Sopt that maximizes L(Sopt ,θ)
and it is then maximized on θ, let us call the optimized parameters as
θopt .

This process is repeated until ∥θ0 − θopt∥ < ψ for some small quantity
ψ.
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Simulation Studies

Two one-dimentional simulations and one two-dimentional simulation
is constructed to compare the model with other comparing models.

One dimentional :
Two cases are considered here on G = [−0.5, 0.5], where the underlying
processes are

Y (1,1)(s) =

{
−0.5 |s| > 0.2

0.5 otherwise ,

Y (1,2)(s) =


exp

(
4 + 5

2s(10s+5)

)
−0.5 < s < 0

1 0.2 ≤ s ≤ 0.3

−1 0.3 < s ≤ 0.4

0 otherwise.

with added Gaussian noise.
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Simulation Studies

Two one-dimentional simulations and one two-dimentional simulation
is constructed to compare the model with other comparing models.

Two dimentional :

The warping function SWGIP as proposed in Zammit-Mangion et
al. (2021)a is taken and compared with other approaches. Data
is simulated in two dimensions from the underlying SIWGP on G =
[−0.5, 0.5]2, denoted as Y (2,1)(·).

aZammit-Mangion, A., Ng, T. L. J., Vu, Q. and Filippone, M. (2021) Deep
compositional spatial models. Journal of the American Statistical Association pp. 1–22.
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Simulation Studies: Results

Table: Comparison on different simulation scenarios.

dataset Models MSPE PICP MPIW

Y (1,1)(s)
GPnonstat

GPorig

GPwarped

0.033
0.034
0.033

0.93
0.94
0.94

0.47
0.47
0.45

Y (1,2)(s)
GPnonstat

GPorig

GPwarped

0.021
0.025
0.016

0.90
0.90
0.93

0.522
0.521
0.423

Y (2,1)(s)
GPnonstat

GPorig

GPwarped

0.348
0.372
0.063

0.96
0.97
0.97

2.822
2.833
1.171
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The Estimated Warping in 2-dimension

The true (left) and the estimated (right) warpings for Y (2,1)(·).
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Conclusion

Spatial normalizing flow represents a deep-learning-based model that
excels in handling processes featuring highly complex nonstationary and
anisotropic covariance structures.

Its construction inherently imposes a smooth injective constraint, thereby
limiting the class of warpings and effectively mitigating the issue of
“space-folding.”

This method boasts extendability to higher dimensions, as the Neu-
ral Autoregressive Flows (NAF) architecture seamlessly accommodates
multidimensional mappings.
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