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Introduction

Statistical modeling of evolving spatial and temporal phenomena is
crucial for environmental monitoring and climate change detection. In
recent years advancement in data collection technologies enabled
high-resolution spatio-temporal data collection.

However, exact likelihood-based computations necessary for
traditional statistical analysis requires O(n2) time and O(n3) memory
complexity for a covariance matrix of size n × n.

Hence it is infeasible to do exact likelihood-based analysis on
large-scale spatio-temporal processes.
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Prior Studies in Large-Scale Spatio-Temporal Modeling

In the past two decades, many statistical and machine learning
methods have emerged to handle large spatio-temporal datasets.

In statistical modeling, approaches such as Veccia’s approximation,
Block Composite Likelihoods, and Hierarchical Bayesian space-time
models have gained prominence.

Within machine learning literature, techniques like Echo-state
networks and Graphical neural networks have been developed for tasks
such as spatio-temporal interpolation.

This study expands upon the DeepKriging framework introduced by
Chen et al. (2022) to encompass spatio-temporal scenarios.
Furthermore, we introduce a two-stage model based on deep neural
networks (DNNs) for probabilistic interpolation and forecasting of
spatio-temporal processes.
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Background

Consider the real valued spatio-temporal random field
{Y (s, t), s ∈ D, t ∈ T },D ⊆ Rp, T ⊆ R. Assuming the data is
observed at N locations and K time points, the realizations can be
given as ZN,K = {Z (s1, t1),Z (s2, t1), . . . ,Z (sN , tK )} such that

Z (s, t) = Y (s, t) + ϵ.

Given observations ZN,K , two common goals of spatio-temporal
prediction are probabilistic interpolation, i.e., predict the true process
Y (s0, t) at unobserved spatial location s0, and forecasting, i.e.,
predict Y (s0, tK+u) at unobserved location s0 at a future time point
tK+u.
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Optimal Predictor for Probabilistic Interpolation

The optimal predictor can written as:

Ŷ opt
τ ((s0, t)|ZN,K ) = argmin

Ŷ

R1(Ŷτ (s0, t)|ZN,K ),

where R1(·) represents the true risk function necessary for obtaining
the τ -th quantile prediction.

An estimation for R1(·) can be expressed through the quantile loss
function, defined as:

Remp
1 (Ŷτ (s, t)|ZN,K ) =

1

NK

N∑
n=1

K∑
k=1

ρτ (Ŷτ (sn, tk)− Z (sn, tk)),

where ρτ (v) = v(τ − I (v < 0)) and τ ∈ (0, 1) is quantile level.
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Basis Functions

Similar to the approach outlined in DeepKriging by Chen et al.
(2022) we formulate this as a regression problem with embedded
inputs from (s, t) as covariates and Y (·, ·) as response.

We employ the Wendland compactly supported basis functions

defined via B1(d) =
(1−d)6

3 (35d2 + 18d + 3)1{0 ≤ d ≤ 1} to
represent the spatial locations. The spatial basis functions are then
defined as ϕi (s) = B1(∥s− ui∥ /θ) with θ as the bandwidth
parameter and anchor points (spatial locations) {u1, u2, ..., uG}.

To represent the temporal bases, we utilize Gaussian radial basis
functions across the time domain. The temporal bases are
subsequently formulated as: ψj(t) = exp(−0.5(t − vj)

2/(κ2)) with
anchor points (time points) v ∈ {v1, v2, ..., vH} and scale set to
κ = |v1 − v2|.
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Space-Time.DeepKriging: DNN for Interpolation

We use a single-output deep neural network structure
(Space-Time.DeepKriging) to build the spatio-temporal
DeepKriging framework with the stacked basis functions as inputs.

Hence Ŷτ (·, ·) can be expressed through the DNN as:

Ŷτ (s, t) = Ψ(τ, fNNτ (Xϕ(s, t))),

where Xϕ(s, t) is the set of stacked basis functions, Ψ(·, ·) is the
activation function of the output layer.
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The output Layer Activation Ψ(·, ·)

In theory, quantile regression lines are expected not to intersect;
however, unconstrained optimization of Remp

1 (Ŷτ (s, t)|ZN,K ) may
inadvertently introduce crossing issues.

To avoid quantile cross-over, we propose the following activation
function for the output layer:

Ψ(τ, x) =


x for τ = 0.5

fConstant +
λ(τ−0.5)
1+e−x for τ > 0.5

fConstant − λ(0.5−τ)
1+e−x for τ < 0.5,
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Space-time.DeepKriging Skeleton for Interpolation

Basis function representation of 
location s

𝜙 1,𝑠 , … , 𝜙 ℎ1,𝑠

Basis function representation of 
time t

{ 𝜙 1,𝑡 , … ,𝜙 ℎ2,𝑠
}

𝑋𝜙 𝑠, 𝑡 = 𝜙 1,𝑠 , … , 𝜙 ℎ1,𝑠 , 𝜙 1,𝑡 , … ,𝜙 ℎ2,𝑠 , 𝑿𝑣𝑒𝑐 𝑠, 𝑡
𝑇 𝑇

A vector of size n

𝑋𝜙 𝑠, 𝑡 1 𝑋𝜙 𝑠, 𝑡 2 𝑋𝜙 𝑠, 𝑡 3 𝑋𝜙 𝑠, 𝑡 𝑛

𝑎11 𝑎12 𝑎1𝑚

෣𝑓𝑁𝑁(𝑋𝜙 𝑠, 𝑡 )

Layer 1

Layer 2

Layer L

Layers 3 to  Layer L-1
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Optimal Predictor for Forecasting

The optimal predictor can written as:

Ŷ opt
τ ((s0, tK+u)|ZN,K ) = argmin

Ŷ

R2(Ŷτ (s0, t)|ZN,K ),

where R2(·) represents the true risk function.

We can estimate R2(·) as:

Remp
2 (Ŷτ (s0, t)|ZN,K ) =

1

K

K∑
k=1

ρτ (Ŷτ (s0, tk)− XNN
k ),

where XNN = {f̂NNτ (Xϕ(s0, t1)), . . . , f̂NNτ (Xϕ(s0, tK ))}T are the
predictions from Space-Time.DeepKriging for location s0 at all
observed time points.
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QLSTM for Probabilistic Forecasting

We use the Long short-term memory (LSTM) network to perform
quantile based forecast of the time series at time point tK+u (We call
it QLSTM).

Here Ŷτ (s0, t) =
̂f LSTMNNτ

(s0, t), where
̂f LSTMNNτ

(s0, t) is a multi-layer
stacked LSTM network.
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Convolutional LSTM: QConvLSTM

Although QLSTM is highly effective for capturing temporal
dependence, it does not use information from other locations.

For space-time data, we propose the convolutional LSTM which
includes data from other locations by passing the CNN layer as the
input to the LSTM layer. (We call it QConvLSTM)
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Expression of R2(·) for QConvLSTM

For this network R2(·) can be written as:

Remp
2 (Ŷτ (s0, t)|ZN,K ) =

1

K

K∑
k=1

ρτ (f
Conv
NNτ

(s0, tk)− XNN
k ),

where f ConvNNτ
(s0, tk) is the output of QConvLSTM.

The sole distinction between f ConvNNτ
(s0, tk) and f LSTMNNτ

(s0, t) lies in the

former’s utilization of matrix inputs XNNCONV , as provided below:
XNNCONV = {A(s0, t1), . . . ,A(s0, tK )}. The matrix

A(s0, t) = {f̂NNτ (Xϕ(sj , t)) : sj ∈ Ns0} (where Ns0 is a gridded
neighbourhood of s0), is a r × r matrix with elements
[Xt(i , j)]i ,j∈{1,...,r}.
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Simulation Studies

The proposed Space-Time.DeepKriging won the KAUST
competition in large-scale prediction on 100k and 1M space-time
locations with double digit improvement in percentage for MSPE over
competing methods such as the Veccia’s approximation and block
composite likelihood.

We compare the method on a simulated nonstationary field with 50k
space-time locations with other competitive methods that can be
applied for large-scale interpolation and forecasting.
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Numeric Results on Simulated Data

Table: Average MSPE of prediction for simulated data. Here SE stands for
standard error of the predictions.

Models MSPE SE

Space-Time.DeepKriging 0.167 0.073
GpGp 0.746 0.288

Table: Average MSPE, MPIW and PICP of forecast for simulated data.

Models Avg.MSPE SE Avg.MPIW SE Avg.PICP

QConvLSTM 0.267 0.219 1.462 0.126 90.39
ARIMA 0.277 0.278 2.262 0.082 90.72
QLSTM 0.392 0.523 1.558 0.316 89.94
GpGp 0.839 0.358 - - -
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Interpolation on Simulated Data

Interpolation on unit square
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Forecast on Simulated Data

Forecasting at specific observed locations using QConvLSTM.
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Application on PM2.5

We also apply our method to the PM2.5 data over USA.

Time period: from January 1998 to December 2022.
Time resolution: monthly, in total 286 months.
Spatial region: The United States of America.
Spatial dimension: There were on average 1900 weather stations per
month.
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Interpolation: PM2.5
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Forecast: PM2.5
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PM2.5 Forecast for San Francisco using QConvLSTM

Forecast period for the last six observed months up to December
2022:
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Conclusion

In this study, without making any parametric assumptions about the
underlying distribution of the data, we have established a novel,
easy-to-use methodology for interpolation as well as forecasting for
spatio-temporal processes.

In order to further enhance our deep learning-based spatio-temporal
modeling architecture, we have additionally included semi-parametric
quantile-based prediction intervals.

Our proposed method for spatio-temporal interpolation and
forecasting is valid for general class of non-Gaussian and
nonstationary spatio-temporal processes.

Our proposed approach can be easily extended to large datasets with
minimum hardware support.
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